Package: Rdta 1.0.1

Rdta: Data Transforming Augmentation for Linear Mixed Models

We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via MCMC. Also see Tak et al. (2019) <doi:10.1080/10618600.2019.1704295>.

Authors:Hyungsuk Tak, Kisung You, Sujit K. Ghosh, and Bingyue Su

Rdta_1.0.1.tar.gz
Rdta_1.0.1.zip(r-4.5)Rdta_1.0.1.zip(r-4.4)Rdta_1.0.1.zip(r-4.3)
Rdta_1.0.1.tgz(r-4.4-any)Rdta_1.0.1.tgz(r-4.3-any)
Rdta_1.0.1.tar.gz(r-4.5-noble)Rdta_1.0.1.tar.gz(r-4.4-noble)
Rdta_1.0.1.tgz(r-4.4-emscripten)Rdta_1.0.1.tgz(r-4.3-emscripten)
Rdta.pdf |Rdta.html
Rdta/json (API)

# Install 'Rdta' in R:
install.packages('Rdta', repos = c('https://hyungsuktak.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 156 downloads 1 exports 13 dependencies

Last updated 10 months agofrom:af4a954741. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winOKNov 11 2024
R-4.5-linuxOKNov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:lmm

Dependencies:codalatticeMASSMatrixMatrixModelsmcmcMCMCpackmvtnormquantregrbibutilsRdpackSparseMsurvival